Efficiency improvements in wireless networks for future European communication needs

Reza Mahmoudi, Ulf Johannsen, Rob Mestrom

CWTe 2010 Fall Research Retreat
October 26, 2010
Motivation

Future communication needs in Europe require:

- high capacity networks
- access to wireless services everywhere

Two main challenges:

1. spectrum use
 - increase spectral efficiency (bits/Hz)
 - decreasing interference with adjacent systems

2. multi-mode
 - multi-standard operation
 - dynamic reconfigurability

In parallel: need for low power consumption
Motivation

Future communication needs in Europe require:

- high capacity networks
- access to wireless services everywhere

Two main challenges:

1. spectrum use
 - increase spectral efficiency (bits/Hz)
 - decreasing interference with adjacent systems

2. multi-mode
 - multi-standard operation
 - dynamic reconfigurability
Motivation

Future communication needs in Europe require:

- high capacity networks
- access to wireless services everywhere

Two main challenges:

1. spectrum use
 - increase spectral efficiency (bits/Hz)
 - decreasing interference with adjacent systems

2. multi-mode
 - multi-standard operation
 - dynamic reconfigurability

In parallel: need for low power consumption
PANAMA project

For this, we have PANAMA

- Country in Central America
- Official language: Spanish
- Capital: Panama City
- Temperature: 24°-29° (Panama City)
- Famous for the Panama Canal

Info from www.wikipedia.com
For this, we have PANAMA

- Country in Central America
- Official language: Spanish
- Capital: Panama City
- Temperature: 24°-29° (Panama City)
- Famous for the Panama Canal

Info from www.wikipedia.com

...but this is not what we mean
PANAMA project

- Power Amplifiers aNd Antennas for Mobile Applications
- European Catrene programme
PANAMA project

- **Power Amplifiers aNd Antennas for Mobile Applications**
- European Catrene programme
- January 2009 – December 2011
- 5 countries
 - France, Spain, Belgium, Israel, the Netherlands
- 22 project partners
 - e.g. ST, Agilent, NXP, Thales, TNO, universities
PANAMA project partners
PANAMA project

- Focus of the project
 - future multi-band, multi-mode more efficient power amplifiers and transmitter systems
 - integrated, discrete and distributed systems
PANAMA project

- Focus of the project
 - future multi-band, multi-mode more efficient power amplifiers and transmitter systems
 - integrated, discrete and distributed systems

- Target applications and standards
 - 3/4G mobile phones and their connectivity standards
 - 3/4G cellular base stations
 - avionics and mobile satellite communications
 - home networking
PANAMA objectives

- Two main objectives of PANAMA:
 1. improve energy saving through better efficiency
 2. increase the capacity for each communication application
Two main objectives of PANAMA:

1. improve energy saving through better efficiency
2. increase the capacity for each communication application

Innovations required in communication chain

- improve the efficiency of each power amplification stage
- take into account the overall transmit and receive chain
PANAMA innovation chain

- Common system approach and common architectures

Goals
- Energy saving through better efficiency
- More capability for each application

System
- Novel reconfigurable architectures
- System level specification

Enablers
- Improved

Design
- Integrated PA
- Discrete PA
- Distributed PA & Antenna
- ADC

Applications
- Handsets
- BTS
- Avionics
- Satcom
- Home Networking

Better tools for better design
Proof of concepts
Market competitiveness

Same goals
Common approach
Better tools for better design
+/Technology evolution
TU/e focuses on antenna systems and the interconnect to the PA
TU/e in PANAMA

- TU/e focuses on antenna systems and the interconnect to the PA

1. Direct matching from antenna to PA (MsM group)
2. Antenna-on-Chip (AoC) for mm-wave applications (EM group)
3. RF MEMS for adaptive antenna beamforming (EM group)
1. Direct matching from antenna to PA

Mixed-signal Microelectronics Group
Reza Mahmoudi
Transmission lines are widely used for matching

- Quality-factors and lengths are important
- PANAMA project: minimize losses in interconnect
Matching at 60 GHz

- Transmission lines are widely used for matching
 - Quality-factors and lengths are important
 - PANAMA project: minimize losses in interconnect

- Method from literature: patterned shielding
 - How does this work?
 - Can this be used for matching?
CPW with patterned shielding

- Effect of patterned shielding studied
 - Simulations using Sonnet
 - QUBIC4X process
 - Shielding in different layers of the stack

Shielding in layer M1

Shielding in layer M5

/department of electrical engineering
Patterned shielding working principle

- Shielding prevents current from flowing horizontally
Patterned shielding working principle

- Shielding prevents current from flowing horizontally

- Creates an anisotropic layer below the CPW
Patterned shielding simulation results

- Results for different widths of CPW line
 - shielding increases the effective permittivity
Patterned shielding simulation results

- Results for different widths of CPW line
 - shielding increases the effective permittivity
 - shielding decreases the wavelength
Patterned shielding simulation results

- Effect of patterned shielding
 - Freedom in characteristic impedance Z_0

![Graph showing the effect of patterned shielding on Re(Z_0)](image)
Patterned shielding simulation results

- Effect of patterned shielding
 - Freedom in characteristic impedance Z_0
 - Increased loss per wavelength

![Graph](#)
2. Antenna-on-Chip for mm-wave applications

Electromagnetics Group

Ulf Johannsen
What is an AoC?

Printed Circuit Board (PCB)
Antenna-on-Chip

- What is an AoC?

Chip Package

Printed Circuit Board (PCB)
Antenna-on-Chip

What is an AoC?

- Chip Package
- Printed Circuit Board (PCB)
Antenna-on-Chip

What is an AoC?

What is an AoC?

Good option for evolving 60 GHz band
Antenna-on-Chip

- What is an AoC?

- Good option for evolving 60 GHz band
Why Antenna-on-Chip?

- No external mm-wave interconnect
- Direct matching of antenna and amplifier
Why Antenna-on-Chip?

- No external mm-wave interconnect
- Direct matching of antenna and amplifier
- Antenna size at mm-waves makes it affordable

Price erosion of typical (Bi)CMOS process
Realization

- AoC bond-wired to differential transmission line
- GSSG infinity probe
Realization

- AoC bond-wired to differential transmission line
- GSSG infinity probe
Realization

- AoC bond-wired to differential transmission line
- GSSG infinity probe

Input impedance Z_{in}
Measurement results

- Radiation pattern measurements

- Good agreement in both principal planes
Measurement results

- Radiation pattern measurements

- Good agreement in both principal planes
3. RF MEMS for adaptive antenna beamforming

Electromagnetics Group
Rob Mestrom
W-CDMA cell site

Cell site efficiency = \(\frac{P_{RF}}{P_{DC}} \)

< 4% for Si-LDMOS

BTS (2G) Node B (3G)

2G antennas
Point to point radio backhaul antenna
3G antennas
Coaxial feeder cables
Equipment shelter
Electricity supply
Security fence
Access road
Backhaul cable

/department of electrical engineering
BTS power budget

Antenna radiates up to 60 W

- Air Cooling: 35%
- AC/DC Converter: 85%, 530W
- Idle: 30%, 250W
- DC/DC Converter: 85%, 590W
- Class B LDMOS: 24%, 120W
- Feeder: 50%, 60W

220V, 990W, 840W, 500W, 1520W
Beamforming for BTS antennas

- Short-term demands for beamforming
 - (re-)calibration of elevation angle (0 – 10°)
 - evolution from mechanical tilt to remote electrical tilt
Beamforming for BTS antennas

- Short-term demands for beamforming
 - (re-)calibration of elevation angle (0 – 10°)
 - evolution from mechanical tilt to remote electrical tilt

- Allows for
 - dynamic cell-breathing
 - reduction of near-far problem in CDMA
Beamforming for BTS antennas (2)

- Long-term demands for beamforming
 - horizontal beamforming
Beamforming for BTS antennas (2)

- Long-term demands for beamforming
 - horizontal beamforming

- Spatial separation of users
 - multiple simultaneous beams
 - adjustable gain or modulation per beam
 - beamforming per time slot possible (LTE)
Approach

- Address demands by phased-array antenna
 - create phase shift between antenna elements using RF MEMS technology
Approach

- Address demands by phased-array antenna
 - create phase shift between antenna elements using RF MEMS technology

- current BTS: 1D array for remote electrical tilt
- future BTS: 2D array for adaptive beamforming
Beamforming

- Create phase shift between antenna elements using RF MEMS switches

Switched line

reflect-line
RF MEMS switches

- Radio Frequency Micro-ElectroMechanical Systems

Why RF MEMS?
- promising new technology
- benefits from both mechanical and electrical disciplines
- small size
- integrability with IC technology

Alternatives are also considered
- pHEMT switches
- PIN-diode switches
- electromagnetic relays
RF MEMS switches

- **Radio Frequency Micro-ElectroMechanical Systems**
- Why RF MEMS?
 - promising new technology
 - benefits from both mechanical and electrical disciplines
 - small size
 - integrability with IC technology

 Alternatives are also considered
- pHEMT switches
- PIN-diode switches
- electromagnetic relays
RF MEMS switches

- **Radio Frequency Micro-ElectroMechanical Systems**

- **Why RF MEMS?**
 - promising new technology
 - benefits from both mechanical and electrical disciplines
 - small size
 - integrability with IC technology

- **Alternatives are also considered**
 - pHEMT switches
 - PIN-diode switches
 - electromagnetic relays
MEMS switches

- Two types of MEMS switches
 - capacitive (switch between two capacitance values)
MEMS switches

- Two types of MEMS switches
 - capacitive (switch between two capacitance values)
 - ohmic (conventional on/off switch)
Phase shift array concept

- Power handling major challenge
- Phased-array feed network for antenna down-tilt
 - unequal power division to cope with power handling
 - phase shift in low-power branches only

![Diagram of phased-array feed network and power distribution]

/department of electrical engineering
Feed network for antenna down-tilt

- **Working principle**
 - Beamforming by setting $\Delta \varphi_1 = -\Delta \varphi_2$
 - $\pm 5^\circ$ beam steering by applying $\pm 30^\circ$ phase shift
Summary

- PANAMA redefined
- Overview of 3 contributions from TU/e
PANAMA redefined

Overview of 3 contributions from TU/e

Thank you for your attention!