Mortar for 3D-printing
3D-printing history and constraints

• Starting points
 – Mimic concrete:
 • Knowledge of the material
 (shrinkage, creep, E-modulus, relations tensile & compressive strength)
 • Durability
 – Monolithic concrete
 – Workability
3D-printing options

- 2 choices
 - Rapid hardening
 - Yield stress and Thixotropic behaviour
Experience

• Knowledge to build on
 – Masonry mortar
 – Concrete for filling joints
 – Tile adhesive
 – Shotcrete (wet method)
 – Creative mortar
Results

• Recipe:
 – CEM I 52,5 R
 – Natural aggregate (maximum 3 mm)
 – Limestone filler
 – Additives (rheology and pumping)
 – Polyprop fibre (plastic shrinkage)
Results

![Graph showing compression strength over time for different materials. The graph compares Weber 3D 115-1, Weber 3D 145-1, and RD_4.3b materials.]
Results

The graph shows the flexural strength (N/mm²) over time (days) for three different materials: Weber 3D 115-1, Weber 3D 145-1, and RD_4.3b. The flexural strength increases with time for all three materials, with Weber 3D 145-1 showing the highest strength at each time point.
Results
Future developments

- Mortar
 - Strength
 - Pumpability
 - Rheology

- Technology
 - Robot, Gantry, inside outside
 - reinforcement
 - printhead
 - ?