Development of membranes for the Acid-base flow (blue) battery (ABFB)

Supervisors: Prof. Kitty Nijmeijer (TUE), Associate Prof. Zandrie Borneman (TUE), Dr. Michel Saakes (Wetsus), Dr. Jan Post (Wetsus)

Along the last decade, renewable energy sources have been revolutionary growing with more than 12% growth rate per annum. However, despite renewable energy sources becoming abundant and cheap they are intermittent sources where their supply does not necessarily match the consumers demand. Energy storage systems provide an alternative solution to store the excess energy and then recover it when needed, such systems ensure the reliability and efficiency of renewable energy supplies.

Recently, there have been advancements in energy storage systems capable of storing GWh-scale energy capacity, such systems despite being promising they still possess several environmental and safety issues. In this project, Acid-base flow battery ABFB is employed as a storage system with water and salt as active materials. Figure 1 is an illustration of the system concept where water is dissociated into acid and base at the junction of the bipolar membrane during the stage of charging. Then acid and base are stored in tanks till the discharge state where they recombine to produce water and salt. In this system, the bipolar membrane is the most crucial and limiting part, during charging water molecules diffuse into the BPM junction and dissociates into a proton and hydroxyl ions while during discharging proton and a hydroxyl ions form water. The ABFB exhibits several drawbacks mainly due to the performance BPM technology:

- BPM delaminates when discharging at higher current densities due to the high rate of water formation at the junction of AEM and CEM which surpasses the level of water diffusion.
- Low round trip efficiency (27%) as a result of unwanted co-ion transfer (the transfer of ions/protons through membranes with the same charge).
- Internal resistance of the system needs to be lowered.

The aim of this project is to develop bipolar membranes and ion exchange membranes which could overcome the drawbacks of the state of art membranes. This includes developing bipolar membranes capable of discharging at higher current densities without delamination. In addition, development of anion and cation ion exchange membranes that mitigate undesired co-ion transfer.

Contact details

Emad Al-Dhubhani
Room: Wetsus 1.10C Tu/e Helix STO 0.47
Email: Emad.Al-Dhubhani@wetsus.nl